

Kinco Automation (Shanghai) Ltd. and its subsidiary, Kinco Electric (Shenzhen) Ltd., are private high-tech enterprises specialized in the research, development, and production of automation products. Kinco controls such companies as JAT Kinco Electric Shenzhen Ltd., and Kinavo Servo Motor (Changzhou) Ltd., and owns two well-known brands, eView and Kinco. Kinco has established full line of automation products such as industrial human-machine interfaces, AC servo systems, stepper systems, PLC and industrial fieldbus products with proprietary intellectual property rights. Kinco as become a leading supplier of machin automation solutions in China.

Undertaking the mission of "Providing automation solutions to global customers" kinco focuses on the development of utomation technology since its founding. Now kinco has acquired technology and knowledg for control, drive human-machine interface and system integration. By adopting international standards and following the trends in automation industry, we developed PLC products compatible with IEC-61131-3 tandard, intellectual AC servo drives, leadin MII products in China and fieldbus products. kinco is capable of making customized products/solutions/services fit the customer's produts belbaplorices fit

Kinco has established R\&D centers in Shenzhen, Shanghai, Beijing, Changzhou and

Germany. We implement total quality management measures complying with ISO9001 standard throughout the marketing R\&D, production, and sales processes. We support our customers at home with a branch and distributor system covering mainland China. We appoint reliable partners to b distributors in overseas markets. Kinco is customer-oriented company, always listening to customers' needs, cooperating with marke leaders in emerging industries, providing first rate automation solutions. Kinco products are widely used in industries such as textile machines, packaging machines, transportation systems and others. Kinco HMI is the No. 1 domestic brands in China market. Kinco brand and products have been awarded by renowned media and organizations within the automatio ommunity.
Sticking to the business philosophy of "Caring people, pursuing excellence" and the value of "customer intimacy", Kinco advocates the corporate spirit of performance-oriented innovation, cooperation and efficiency. With the vision of "Automation creates wonderfu life" in our minds, Kinco is always trying it best to be the partner of your every success and creates values for you

Kinco stepper driver 2M412

Kinco stepper driver 2M420
Kinco stepper driver 2M530
Kinco stepper driver 2M880N Kinco stepper driver 2M1180N Kinco stepper driver 2M2280N Kinco stepper driver 3M458 Kinco stepper driver 3M2280N

Stepper Motor

Kinco two-phase stepper motor 42 series Kinco two-phase stepper motor 56 series Kinco two-phase stepper motor 86 series Kinco two-phase stepper motor 110 series Kinco two-phase stepper motor 130 series Kinco three-phase stepper motor 57 series Kinco three-phase stepper motor 85 series

Subdivision setting			SW1=ON	sW1=OFF	Current setting			SW10=ON	SW10=OFF
sw2	sw3	sw4	Subdivision		sw7	sw8	sw9	Current (Peak, unit:A)	
ON	ON	ON	2	5	ON	ON	ON	2.4	5.6
OFF	ON	ON	4	10	OFF	ON	ON	2.8	6.0
ON	OFF	ON	8	20	ON	OFF	ON	3.2	6.4
off	OFF	ON	16	25	OFF	OFF	ON	3.6	6.8
ON	ON	OFF	32	40	ON	ON	OFF	4.0	7.2
off	ON	OFF	64	50	OFF	ON	OFF	4.4	7.6
ON	OFF	OFF	128	100	ON	OFF	OFF	4.8	8.0
off	OFF	OFF	256	200	OFF	OFF	OFF	5.2	NA

[^0]

Technical Specifications

Parameter	Value
Input voliage	Single phase $77 \mathrm{VAC}-123 \mathrm{VAC}$, (5 OHz)
Output current	4.5A, 5A, 5.5A, 6A, 6.5A, 7A, 7.5A, 8A
Micro step	2/4/5/8/ 10/16/ $20 / 32 / 50 / 64 / 100 / 128$
Input signal	PLS, DIR, FREE (current limit: 6~16 mA)
Control signal mode	PLS+DIR, CW/CCW
Output signal	Port: ERR (maximum current: 10mA)
Protection	Overvoltage, undervoltage, short circuit and heat protection.
Brake mode *	Available to connect the power resister. Need custom.
Cooling way	Fan cooling
Operation environment	Avoid the environment with great amount of metallic powder, oil mist, or erosive gases.
Operation humidity	<85\%, RH
Operation temperature	$0^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Weight	1.5 Kg
Dimensions	$201 \times 147 \times 66 \mathrm{~mm}$
Ingress protection	1 P20

Ingress protection

High-performance, low prices;
The input voltage of 2M1180N is 7 7TVAC-123VAC (single-phase);

 PLSPDIR and CW/CWC control signal available;
Supply optocoupler isolated $E R R$ output signal;
Automatic semi-current t ocking, reduce the motor's heat drastically;
Optocoupler isolated signal input tircuit. The maximum frequency of control 1 signal is upto 400 kHz
12 micro-step value, the maximum micro-step value is 128 ;
With the protection tunction of overvoltage, undervoltage, short circuit and heat protection

Nigh-performance, low prices,
The input voltage of 2 M2280
Automatic parameter adiustable ereuluation
2M2280 appoly the test running requation;
Phase memory technology the diver will
Phase memol technology: the driver will record the phase when re-power the driver, the motor won't shake anymore
PLS+DIR and CWICCW control signal avaiable: PLSVDIR and CW/CCW control signal availabe;
Provide optocoupler isolated $E R R$ output signal;
Automatic semi.current locking, reduce the motor's heatdrastically;
Optocouplerisolated signal input circuit. The maximum frequency of control signal is upto 40 K Hz - 12 micro-step value, the maximum micro-step palue is 128 ;

Technical Specifications

Parameter	Value
Input voliage	Single phase 220V AC $\pm 15 \%(50 \mathrm{~Hz}$) (187VAC 253 VAC)
Output current	4.5A, 5A, 5.5A, 6A, 6.5A, 7A, 7.5A, 8A
Micro step	2/ / /5/8/ 10/ 16/ 20/ $32 / 50 / 64 / 100 / 128$
Input signal	PLS, DIR, FREE (current limit: 6~16 mA)
Control signal mode	PLS+DIR, CW/CCW
Output signal	Port: ERR (maximum current: 10 mA)
Protection	Overoltage, undenvoltage, short dircuit and heat protection.
Brake mode *	Available to connect the power resister. Need custom.
Cooling way	Fan cooling
$\begin{array}{l\|l} \hline \mathrm{m} & \text { Operation } \\ \leq . & \text { environment } \\ \hline y \end{array}$	Avoid the environment with great amount of metallic powder, oil mist, or erosive gases.
Operation humidity	<85\%, RH
$\stackrel{\text { On }}{\text { a }}$ Operation temperature	$0^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$
$=$ Storage temperature	$-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Weight	1.5 Kg
Dimensions	$201 \times 147 \times 66 \mathrm{~mm}$
Ingress protection	IP20

Mechanical Dimensions unitum

Ingress protection
Function of Rotary Switch

S1, Micro-step								
S1	0	1	2	3	4	5	6	7
Microstep	2	4	5	8	10	16	20	32
Pulse/rev	400	800	1000	1600	2000	3200	4000	6400
S1	8	9	A	B	C	D	E	F
Microstep	50	64	100	128	NA	NA	TEST	NA
Pulse/rev	10000	12800	20000	25600				

Mode	PLS+DIR							
S2	0	1	2	3	4	5	6	7
Rms(A)	3.18	3.54	3.89	4.24	4.60	4.95	5.30	5.65
Peak(A)	4.5	5	5.5	6	6.5	7	7.5	8
Mode	cwiccw							
S2	8	9	A	в	c	D	E	F
Rms(A)	5.65	5.30	4.95	4.60	4.24	3.89	3.54	3.18
Peak(A)	8	7.5	7	6.5	6	5.5	5	4.5

[^1]

Current output;
The
The internal drive DC voltage reaches 40 V , which can provide better high-speed
Supporting automatictage reaches $40 V$, which can provide better high-speed; dissipation of the mototors; Supporting subdivision function up to 10,000 steps/revolution; the subdivision function can be set through the
DIP switch to ensure the

Optical coupling devices are used for the isolation of the input circuit of the control signals to reduce interference
of external noises;
Of external noisess;

- The sine current drive mode is taken so that the no-load startirequency of a motor can reach about 5 KHz
(100 stepssfrevolution).
Of externa noisess,
The sine current dive mode is taken so that the no-load startrifequency of a motor can reachabout 5 KHz
(100 steps

			Sudivisor
,	,	,	Su0a susion
ON	ON	OFF	500 stepss/revolution
ON	OFF	ON	600 steps Irevolution
ON	OFF	OFF	1000 steps/revolution
OFF	ON	ON	2000 steps/revolution
OFF	ON	OFF	4000 steps/revolution
OFF	OFF	ON	5000 steps/revolution
OFF	OFF	OFF	10000 steps/revolution

Functions of DIP Switch
\. There is a red 8-bit DIP function seting swith in the middale of the

Seitil	of ON	Function of OFF	Remarks
DIP1-D1P3	Sudivision seting	Subdivision setting	
DIP4	Full current of static current	Half furrent of static current	
D1P5-D1P8	Output current setting	Output current setting	

2. When the voltage of the control ignal is 5 V , then the resistors

High pepformance, low cost, and diversified functions;
The input voltage of $3 M 2820$ is is $187 \mathrm{~V}-253 \mathrm{~V}$; Automatic parameter adiustable regulation; Driver test truning tunctio
Phase memory function; PLLS+DIR and CW/CCW control signal avaiable;
Optocoupler isolation IO. There is an $E R R$ Rignal Optocoupler isolation $1 / \mathrm{O}$. There is an ERR signal outut;
The driver will reduce the phase current the motrout Opto-isolation signal input, with pulse response frequencyup to 400 KHz ; 14 micro-step value, the maximum micro-step valueis 20000 pulserfev. The maximum output phas
currentis A APPeak,
With the protection function of over-voltage, under-voltage, over-current, overheat
With ste With the protection function of ove-voltage, under-voltage, over-current, overheat,
With step smoot fiter, cans smooth the input pulse, reduce the transient motion of motor, make the
motor runs more smoothly.

Technical Specifications

Parameter		Description
Input voltage		Single phase 220V AC $\pm 15 \%$ (50 Hz)(187VAC 2533 VAC)
Phase current		$\begin{aligned} & \text { 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6, 6.4, 6.8, } \\ & \text { 7.2, 7.6 8.0 (peak, unit: A) } \end{aligned}$
Micro step		$400,500,600,800,1000,1200,1500,2000,3000$, 4000, 5000, 6000, 10000, 20000 (unit: pulse/rev)
Input signal		Three control signal ports: PLS(CW)/DIR(CCW)/FRE; current range: $6 \sim 16 \mathrm{~mA}$
Contol signal input method		PLS+DIR;
Output signal Automatic hall-current		ERR, open collector output, max current: 10 mA
		The driver will reduce the phase current of the motor by a half in 1.5 seconds
Protection		Over-voltage, under-volage, short dircuit, and overeat protection
Absorbing circuit ${ }^{\text {a }}$		Need customize, used to absort the energy feed back by the motor
Cooling method		Forced air cooling
	Operation environment	Avoid the environment with great amount of metallic powder, oil mist, or erosive gases.
	Operation humidilit	<85\%, RH (non-condensing or water drops)
	Operation temperature	$0^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$
	Storage temperature	$-20^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
Weight (net)		1.5 Kg
Dimensions		$201 \times 147 \times 66 \mathrm{~mm}$
	ess protection	IP20

S1, Micro-step:								
S1	0	1	2	3	4	5	6	7
Pulselrev	400	500	600	800	1000	1200	1500	2000
S1	8	9	A	B	C	D	E	F
Pulse/rev	3000	4000	5000	6000	10000	20000	SET1	SET2
S2, Current:								
Mode	PLS+DIR							
S2	0	1	2	3	4	5	6	7
Peak(A)	2.80	3.20	3.60	4.00	4.40	4.80	5.20	5.60
Rms(A)	1.98	2.26	2.55	2.83	3.11	3.39	3.68	3.96
Mode	CW/CCW							
S2	8	9	A	B	C	D	E	F
Peak(A)	6.00	6.40	6.80	7.20	7.60	8.00	M1	M2
Rms(A)	4.24	4.53	4.81	5.09	5.37	5.66		

Operation Table			
Mode	s1	s2	Method
Auto Run	F	0~D	Set the $\mathrm{s} 1 \& \mathrm{~s} 2$ as $\mathrm{S} 1=\mathrm{F}, \mathrm{S} 2=0 \sim \mathrm{D}$ when driver is power off, then power on the driver the motor will run automatically
PLS+DIR	E	E	Set S1 and S2 as the "MODE settings (as the left table)" when driver is power off, then power on as. this means the mode setting is as: , this means the mode setting is success, then reboot the driver, the driver will work in setting mode.
Cw/ccw	E	F	
HALF CURRENT	E	c	
FULL CURRENT	E	D	
Step smooth filter enable	F	F	Enable smoothing acceleration/ deceleration function
Step smooth filter disable	F	E	Enable inmediately response mode.

Technical Specifications	2S42Q-03848	2S42Q-02940	Torque-frequency Curve of
Step angle	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$	
Phase current (A)	1.2	0.87	\square
Holding torque (Nm)	0.32	0.24	,
Damping torque (Nm)	0.02	0.015	- $x^{\text {a }}$
Winding resistance (Ω)	$3.2 \pm 10 \%$	$3.3 \pm 10 \%$	-
Winding inductance (mH)	$6.0 \pm 20 \%$	$5.0 \pm 20 \%$	$\xrightarrow{\text { L }}$
Motor inertia (kg.cm²)	0.08	0.06	(ex
Motor length L (mm)	48	40	
Motor length L1 (mm)	24 ± 0.5	22 ± 0.5	Torque-frequency Curve of2S42Q-03848/2M412
Number of lead wires	4	4	
Insulation class	B		
Withstand voltage level	300 V AC 1S 5mA		
Max. axial load (N)	10		\%
Max. radial load (N)	21		
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		\because
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current after two phases are connected)		0
Insulation impedance	Minimum 100M Ω, 500V DC		
Weight (kg)	0.34	0.24	
Lead wire length (mm)	400 ± 5	500 ± 3	

Motor Cable

Wire Color	Motor Signal
Brown	A+
Orange	A-
Grey	B+
Green	B-

2S42Q-03848

2S42Q-02940

 Torau-freauency Curve of
2S56Q-02976/2M 530

Note: Where, the shaft diameter of 2 S886Q-051F6 is 15.875 mm ,
and key is $5.5 \times 5 \times 25 m \mathrm{~m}$
flatkey and key is $\mathrm{a} 5 \times 5 \times 25 \mathrm{~mm}$ flatkey.

Technical Specifications	2586Q-069B8	2S86Q-05180	2S86Q-03865
Step angle	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$
Phase current (A)	3.0	3.0	3.0
Holding torque (Nm)	8.5	4.5	3.4
Damping torque (Nm)	0.24	0.12	0.08
Winding resistance (Ω)	2.3土10\%	1.7 $\pm 10 \%$	1.25 $\pm 10 \%$
Winding inductance (mH)	26 $\pm 20 \%$	$16 \pm 20 \%$	7.0 $\pm 20 \%$
Motor inertia (kg.cm²)	3.4	1.4	1.0
Motor length L (mm)	118	80	65
Number of lead wires		4	
Insulation class		B	
Withstand voltage level	1200 V AC 1 S 5 mA		
Max. axial load (N)	60		
Max. radial load (N)	220		
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current after two phases are connected)		
Insulation impedance	Minimum 100M Ω, 500V DC		
Weight (kg)	3.7	2.3	1.7

Motor Cable

	Wire Color	Motor Signal
3 M	Black	A+
A- -	Green	A-
m	Red	B+
B+	Blue	B-

Four lead wires of Two-phase Motor

Motor Cable

Wire Color	Motor Signal	T
Black	A+	M
Green	A-	
Red	B+	
Blue	B-	

Technical Specifications	2S110Q-054K1	2S110Q-047F0	2S110Q-03999
Step angle	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$
Phase current (A)	8.0	6.5	5.5
Holding torque (Nm)	30.0	21.0	11.7
Damping torque (Nm)	0.75	0.59	0.3
Winding resistance (Ω)	0.67 $\pm 10 \%$	0.72 $\pm 10 \%$	$0.7 \pm 10 \%$
Winding inductance (mH)	11 $\pm 20 \%$	12.8 $\pm 20 \%$	9.8 $\pm 20 \%$
Motor inertia (kg.cm²)	16.2	10.9	5.5
Motor length L (mm)	201	150	99
Number of lead wires	4		
Insulation class	B		
Withstand voltage level	1200 V AC 1 S 5 mA		
Max. axial load (N)	60		
Max. radial load (N)	220		
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current ater two phases are connected)		
Insulation impedance	Minimum 100M Ω, 500V DC		
Weight (kg)	11.7	8.4	5.0

11.7
8.4

Motor Cable

		Pin	Motor Signal
		1	A+
		2	A-
m		3	B+
		4	B-
		5	GND

Technical Specifications	2S130Y-063R8	2S130Y-039M0
Step angle	$1.8{ }^{\circ} \pm 5 \%$	$1.8{ }^{\circ} \pm 5 \%$
Phase current (A)	7.0	6.0
Holding torque (Nm)	40.0	27.0
Damping torque (Nm)	1.5	0.8
Winding resistance (Ω)	0.9 $\pm 10 \%$	$0.65 \pm 10 \%$
Winding inductance (mH)	9.5 $\pm 20 \%$	13.8 $\pm 20 \%$
Motor inertia (kg.cm²)	48.4	33.3
Motor length L (mm)	230	165
Number of lead wires	4	
Insulation class	B	
Withstand voltage level	1800 V AC 155 mA	
Max. axial load (N)	60	
Max. radial load (N)	220	
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$	
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current after two phases are connected)	
Insulation impedance	Minimum 100M Ω, 500V DC	
Weight (kg)	19.0	13.0

Note: Where, the shaft diameter of
3S570-04079 is 8 mm.

Technical Specifications	3S57Q-04079	3S57Q-04056	3S57Q-04042
Step angle	$1.2{ }^{\circ} \pm 5 \%$	$1.2^{\circ} \pm 5 \%$	1.2 ${ }^{\circ} \pm 5 \%$
Phase current (A)	5.8	5.6	5.2
Holding torque (Nm)	1.5	0.9	0.45
Damping torque (Nm)	0.07	0.04	0.02
Phase resistance (Ω)	1.05 $\pm 10 \%$	$0.7 \pm 10 \%$	1.3 $\pm 10 \%$
Phase inductance (mH)	$2.4 \pm 20 \%$	$1.7 \pm 20 \%$	1.4 $\pm 20 \%$
Motor inertia (kg.cm²)	0.48	0.3	0.11
Motor length L (mm)	79	56	42
Number of lead wires		6	
Insulation class		B	
Withstand voltage level	600 V AC 1S 5 mA		
Max. axial load (N)	15		
Max. radial load (N)	75		
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$		
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current afere two phases are connected)		
Insulation impedance	Minimum 100M Ω, 500V DC		
Weight (kg)	1	0.72	0.45

Motor Cable

Six lead wires of three-phase motor

Wire Color	Motor Signal
Red	u
Silvery White	
Blue	V
White	
Yellow	W
Green	

Toraue-frequency Curve o
$3 S 570-04056 / 3 \mathrm{M} 458$

Toraue-freauencyCurve
$3 S 57 Q$ - 0407973 M 458

Note: All keys of the motor havea whitrey key
Referto the above figure for dimensions.

Technical Specifications	3S85Q-04097	3S85Q-04067
Step angle	$1.2^{\circ} \pm 5 \%$	$1.2^{\circ} \pm 5 \%$
Phase current (A)	5.8	5.8
Holding torque (Nm)	4.0	2.0
Damping torque (Nm)	0.12	0.08
Phase resistance (Ω)	1.1 $\pm 10 \%$	0.6 $\pm 10 \%$
Phase inductance (mH)	$4.6 \pm 20 \%$	1.8 $\pm 20 \%$
Motor inertia (kg.cm²)	2.32	1.1
Motor length L (mm)	97	67
Number of lead wires	6	
Insulation class	B	
Withstand voltage level	600 VAC 155 mA	
Max. axial load (N)	60	
Max. radial load (N)	220	
Operating temperature	$-20^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$	
Surface temperature rise	Max. $80^{\circ} \mathrm{C}$ (rated phase current after two phases are connected)	
Insulation impedance	Minimum 100M $\Omega, 500 \mathrm{~V}$ DC	
Weight (kg)	2.7	1.65

Motor Cable

Wire Color	Motor Signal
Red	u
Silvery White	
Blue	V
White	
Yellow	w
Green	

Torque-frequencyCurve of
$3 S 85 \mathrm{Q}-04097 / 3 \mathrm{M} 458$

six lead wires of three-phase motor

Denomination Rules of Stepper Motor

Denomination Rules of Stepper Driver

Whole-step, half-step, subdivision(micro-step).
The main difference is the control precision of the motor coil current. Generally stepper motor has a character of low frequency vibration.It can improve the stability of motor in low speed.

Motion Mode	Rotational Motion	Linear Motion	
		Horizontal axial direction	Vertical axial direction
Mechanical structure	Stepper Motor	Stepper Motor	Stepper Motor
Speed curve			
Single travel(m)	${ }_{l}={ }_{60}^{V l}\left(t_{0}-t_{1}\right)$		
Drive speed(rpm)	Nl	$N l=\frac{V l}{P_{B}}$	${ }^{N}=\frac{V l}{P_{B}}$
Rotational speed of motor(rpm)	$N_{M}=N l \cdot R$		
Load torque(N.m)	$T_{L}=\frac{T l}{R \cdot \eta}$	$T_{L}=\frac{\mu \cdot g \cdot M \cdot P_{B}}{2 \pi \cdot R \cdot \eta}$	$T_{L}=\frac{g \cdot\left(M-M_{C}\right) \cdot P_{B}}{2 \pi \cdot R \cdot \eta}$
Load Inertia (kg.m²)	$J_{L}=J_{L 1}+J_{L 2}+J_{L 3}$		
Linear motion		$J_{L 1}=M \cdot\left(\frac{P_{B}}{2 \pi R}\right)^{2}$	$J_{L 1}=\left(M+M_{C}\right) \cdot\left(\frac{P_{B}}{2 \pi R}\right)^{2}$
Rotational motion	Solid cylinder $\quad J_{K}=\frac{\pi}{32} \rho \cdot L \cdot$ Hollow cylinder: $\quad J_{K}=\frac{\pi}{32} \rho \cdot L$	Solid Cylinder : $\left.{ }^{4}-D_{1}^{4}\right)$ - Hollow Cylinder : ed to motor shaft	density: iron $\rho=7.9 \times 10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ Aluminum: $\rho=2.7 \times 10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ Brass: $\rho=8.5 \times 10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ Nylon: $\rho=1.1 \times 10^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ $J_{L 2}=J_{K} \quad$ Gear output: $J_{L 3}=\frac{J_{K}}{R^{2}}$
Start torque(N.m)	$T_{S}=\frac{2 \pi \cdot N_{M}\left(J_{M}+J_{L}\right)}{60 \times \mathrm{t}_{1}} \quad J_{\omega}$ indicates the inertia of the motor rotator (Unit: kg. m^{2})		
Necessary torque(N.m)	$\mathrm{T}_{\mathrm{M}}=\left(\mathrm{T}_{\mathrm{L}}+\mathrm{T}_{\mathrm{T}}\right) \times \mathrm{S}$	S indicates the safety coefficient, normally $2 \sim 3$.	

Model Selection Procedure

Example for Model Selection

Speed: $\mathrm{VI}=1.5 \mathrm{~m} / \mathrm{min}$
Quality of slide part: $\mathrm{M}=50 \mathrm{~kg}$
Screw length: $L_{8}=1.4 \mathrm{~m}$
Screw diameter: $D_{\mathrm{s}}=0.012 \mathrm{~m}$
Screw lead: $P_{\mathrm{B}}=0.004 \mathrm{~m}$
Coupler quality: $\mathrm{M}_{\mathrm{c}}=0.2 \mathrm{~kg}$
Outer diameter of coupler $\mathrm{Dc}=0.04 \mathrm{~m}$
Friction coefficient: $\mu=0.3$ Movement distance: $I=0.00275$ Motion time: $\mathrm{t}_{0}=1.2 \mathrm{~s}$
Mechanical efficiency: $\eta=0.9$

(1) Speed curve

(2) rotation speed of motor

$$
\mathrm{N}=\frac{V l}{P_{B}}=\frac{1.5}{0.004}=375(\mathrm{rpm})
$$

(3) Load torque

$$
\mathrm{TL}=\frac{\mu \cdot g \cdot M \cdot P_{B}}{2 \pi \eta}=\frac{0.3 \times 9.8 \times 50 \times 0.004}{2 \pi \times 0.9}=0.104(\mathrm{~N} \cdot \mathrm{~m})
$$

(4) Load inertia

$$
\text { Linear motion: } \quad \mathrm{JLM}=\mathrm{M}\left(\frac{P_{g}}{2 \pi}\right)^{2}=50 \times\left(\frac{0.004}{2 \pi}\right)^{2}=0.2 \times 10^{-1}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

$$
\text { Ball screw: } \quad \mathrm{J}=\frac{\pi}{32} \cdot \cdot L_{B} \cdot D_{b}^{4}=\frac{\pi}{32} \times 7.87 \times 10^{3} \times 1.4 \times(0.012)^{4}=0.224 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

$$
\text { Coupler: } \quad \mathrm{J}=\frac{1}{8} M_{c} \cdot D_{c}^{2}=\frac{1}{8} \times 0.2 \times(0.04)^{2}=0.4 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
$$

Load inertia: $\quad \mathrm{J}_{\mathrm{L}}=\mathrm{J}_{\mathrm{LL}+\mathrm{J}} \mathrm{J}_{\mathrm{B}} \mathrm{J} \mathrm{C}=0.824 \times 10^{-1}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
(5) Motor torque

Start torque $\quad \mathrm{Ts}=\frac{2 \pi N_{w}\left(J_{\mu}+J_{L}\right)}{60 t_{1}}=\frac{2 \pi \times 375 \times\left(J_{w_{1}}+0.824 \times 10^{-4}\right)}{60 \times 0.1}=0.032+392.5 J_{M}(\mathbb{N} \cdot \mathrm{~m})$
Necessary torque: $\mathrm{T}_{\mathrm{M}}=\left(\mathrm{TL}_{\mathrm{L}}+\mathrm{Ts}\right) \times \mathrm{S}=\left(\mathrm{T}_{\mathrm{L}+\mathrm{Ts}}\right) \times 2=0.272+0.08 \times 10^{4} J_{M}(\mathbb{N} \cdot \mathrm{~m})$
S indicates the safety coefficient, normally 2 J_{μ} indicates the inertia of the motor rotator (Unit. kg^{2})
(6) Motor selection

Based on the above calculation, preliminarily this motor model is selected, i.e., $2 \mathrm{~S} 56 \mathrm{Q}-02741$. rotator
nertia Jm $=0.135 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\mathrm{T}_{\mathrm{M}}=0.272+0.08 \times 10^{4} \times 0.135 \times 10^{-4}=0.283(\mathrm{~N} \cdot \mathrm{~m})$

Refer to the torque-frequency curve of 2S56Q-02741. The output torque of the motor meets the requirements, so this motor is selected

Installation Direction

There is no limitation for the installation direction of motors, but normally motors are horizontally installed. They also support vertical downward or upward installation
Regardless of the installation direction of motors, please do not apply excessive vertical or
horizontal load to the shaft of a motor

Installation

Please install the motor closely on a metallic surface with perfect heat conductivity.

Recommended Motor Installation Position

Motors shall be installed in positions meeting the following conditions:

1.Indoor;
2. The temperature inside the control cabinet shall range from $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$ (non-freezing);
3. The humidity inside the control cabinet shall be less than 85% (non-condensing);
4.Free from erosive gases or dust;
5.Free from water or oil (if available, please install a sheath);
6.Perfect ventilation and heat dissipation.

Iigned Connection of Load

When a load is connected to the motor shaft, make sure that the load shaft aligns with the motor shaft. It is recommended that an anti-backlash flexible coupler or other appropriate devices are used to meet this requirement Mechanical processing is forbidden for the motor shaft. Please contact your supplier if it is really necessary

[^0]: DP switch isforbidden to setas NA or the driver will healarm automatically

[^1]: swich is forbidden to setas N / A, or the driver will be ealarm automatically.

